$\gamma = 86.869 \ (2)^{\circ}$

Z = 2

V = 1229.5 (2) Å³

Mo $K\alpha$ radiation

 $0.48 \times 0.40 \times 0.33 \text{ mm}$

6402 measured reflections

4280 independent reflections

2986 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.86 \text{ mm}^{-3}$

T = 298 K

 $R_{\rm int} = 0.026$

358 parameters

 $\Delta \rho_{\text{max}} = 0.75 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.16 \text{ e } \text{\AA}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(5-carboxy-2-propyl-1*H*imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)nickel(II) tetrahydrate

Run-Zhen Fan,^a Shi-Jie Li,^b Wen-Dong Song,^a* Dong-Liang Miao^b and Shi-Wei Hu^b

^aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and ^bCollege of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China Correspondence e-mail: songwd60@126.com

Received 13 May 2010; accepted 27 June 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; disorder in main residue; R factor = 0.066; wR factor = 0.208; data-to-parameter ratio = 12.0.

In the title complex, $[Ni(C_8H_9N_2O_4)_2(H_2O)_2]\cdot 4H_2O$, the Ni^{II} ion is coordinated in a slightly distorted octahedral environment formed by two bis-chelating H₂pimda (H₃pimda is 2propyl-1*H*-4,5-dicarboxylic acid) ligands and two coordinated water molecules. In the crystal structure, a three-dimensional framework is formed by intermolecular $O-H\cdots O$ and N- $H\cdots O$ hydrogen bonds involving the solvent water molecules, coordinated water molecules, carboxylate O atoms and the protonated N atoms of the H₂pimda ligands. The propyl groups of each H₂pimda ligand are disordered over two sets of sites with refined occupancies of 0.50 (2):0.50 (2) and 0.762 (11):0.238 (11). In one water solvent molecule, one of the H atoms was refined as disordered over two sites of equal occupancy.

Related literature

For the potential uses and diverse structural types of imidazole-4,5-dicarboxylic acid complexes, see: Zou *et al.* (2006); Li *et al.* (2006); Liu *et al.* (2004); Sun *et al.* (2005).

Experimental

Crystal data

 $\begin{bmatrix} Ni(C_8H_9N_2O_4)_2(H_2O)_2 \end{bmatrix} \cdot 4H_2O \\ M_r = 561.15 \\ Triclinic, P\overline{1} \\ a = 10.466 (1) Å \\ b = 10.5829 (11) Å \\ c = 11.3011 (13) Å \\ \alpha = 81.585 (1)^{\circ} \\ \beta = 83.580 (1)^{\circ} \end{bmatrix}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{\rm min} = 0.682, T_{\rm max} = 0.764$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.208$ S = 1.054280 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O13^{i}$	0.86	1.91	2.745 (7)	162
N4−H4···O12	0.86	1.88	2.734 (7)	171
O3−H3···O2	0.82	1.65	2.466 (6)	176
O7−H7···O6	0.82	1.70	2.523 (6)	180
$O9-H9C\cdots O4^{ii}$	0.85	2.11	2.960 (6)	174
$O9-H9D\cdots O8^{iii}$	0.85	1.96	2.807 (6)	173
$O10-H10C\cdots O4^{iv}$	0.85	1.87	2.724 (6)	177
$O10-H10D\cdots O11^{v}$	0.85	1.83	2.675 (7)	177
$O11-H11C\cdots O1^{vi}$	0.85	2.06	2.904 (6)	172
$O11 - H11C \cdot \cdot \cdot O2^{vi}$	0.85	2.62	3.197 (7)	127
$O11 - H11D \cdot \cdot \cdot O6^{i}$	0.85	1.99	2.830 (6)	172
O12−H12C···O14	0.85	1.84	2.676 (10)	166
$O12-H12D\cdots O3^{vi}$	0.85	2.07	2.904 (7)	167
$O13-H13C \cdot \cdot \cdot O11^{vii}$	0.85	2.23	2.889 (9)	134
$O13 - H13D \cdot \cdot \cdot O8$	0.85	2.44	3.068 (9)	131
O14−H14G···O13	0.85	1.99	2.488 (11)	117
$O14-H14H \cdot \cdot \cdot O14^{viii}$	0.85	1.54	2.355 (17)	160
$O14-H14F\cdots O5^{ix}$	0.85	2.19	2.778 (9)	127

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors acknowledge Guang Dong Ocean University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5048).

References

- Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, C. J., Hu, S., Li, W., Lam, C. K., Zheng, Y. Z. & Tong, M. L. (2006). Eur. J. Inorg. Chem. pp.1931–1935.
- Liu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806–2807.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sun, Y. Q., Zhang, J., Chen, Y. M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814–5817.
- Zou, R. Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542-2546.

Acta Cryst. (2010). E66, m897-m898 [doi:10.1107/S1600536810025237]

Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)nickel(II) tetrahydrate

R.-Z. Fan, S.-J. Li, W.-D. Song, D.-L. Miao and S.-W. Hu

Comment

Recently, imidazole-4,5-dicarboxylic acid (H₃IDC) with two nitrogen and four oxygen atoms has drawn great interest in coordination chemistry due to the fact that H₃IDC can be deprotonated to form H₂IDC⁻, HIDC²⁻ and IDC³⁻ anions at different pH values. H₃IDC has been widely used to coordinate with metal salts to obtain a series of MOFs with different structures and useful properties (Zou *et al.*, 2006; Li *et al.*, 2006; Liu *et al.*, 2004; Sun *et al.*, 2005), Therefore, we chose H₃pimda to obtain a new Ni^{II} complex, whose structure is be reported herein.

As illustrated in Fig. 1, the title compound contains an Ni^{II} ion, coordinated by two mono-deprotonated H₂pimda⁻ anions and two coordinated water molecules in a slightly distorted octahedral geometry. Four solvent water molecules complete the formula unit. The dihedral angle between the two imidazole rings is 95.11 (17)°. In the crystal structure, a three-dimensional framework is formed by intermolecular O-H···O and N-H···O hydrogen bonds involving the solvent water molecules, coordinated water molecules, carboxy O atoms and the protonated N atoms of H₃pimda ligands. The propyl groups of each H₃pimda ligands are disordered over two sets of sites with refined occupancies of 0.50 (2):0.50 (2) and 0.762 (11):0.238 (11). In one water solvent molecule, one of the H atoms was refined as disordered over two sites with equall occupancies.

Experimental

A mixture of NiNO₃ (0.5 mmol, 0.06 g) and 2-propyl-1*H*-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.99 g) in 15 ml of C_3H_7NO solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433k for 4 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

C and N bound H atoms were placed in calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.96-0.97 Å, N—H = 0.86 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C, N)$ or 1.5 $U_{eq}(C_{methyl})$. H atoms of the water molecules were located in a difference Fourier map and were allowed to ride on the parent atom, with O-H = 0.85 Å and $U_{iso}(H)=1.2 U_{eq}$.

Figures

Fig. 1. The assymetric unit of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. H atoms bonded to C atoms are not shown. The disorder is not shown.

Fig. 2. Part of the crystal structure showing O—H…O and N—H…O hydrogen bonds as dashed lines. Neither the disorder in the complex nor the H atoms which are not involved in hydrogen bonds are shown.

Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)nickel(II) tetrahydrate

Z = 2

F(000) = 588 $D_x = 1.516 \text{ Mg m}^{-3}$

 $\theta = 2.5-23.9^{\circ}$ $\mu = 0.86 \text{ mm}^{-1}$ T = 298 KBlock, green

 $0.48 \times 0.40 \times 0.33 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 2051 reflections

Crystal data
[Ni(C ₈ H ₉ N ₂ O ₄) ₂ (H ₂ O) ₂]·4H ₂ O
$M_r = 561.15$
Triclinic, PT
Hall symbol: -P 1
a = 10.466 (1) Å
<i>b</i> = 10.5829 (11) Å
<i>c</i> = 11.3011 (13) Å
$\alpha = 81.585 \ (1)^{\circ}$
$\beta = 83.580 \ (1)^{\circ}$
$\gamma = 86.869 \ (2)^{\circ}$
V = 1229.5 (2) Å ³

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	4280 independent reflections
Radiation source: fine-focus sealed tube	2986 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007)	$h = -12 \rightarrow 12$
$T_{\min} = 0.682, \ T_{\max} = 0.764$	$k = -11 \rightarrow 12$
6402 measured reflections	$l = -10 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.208$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_0^2) + (0.0945P)^2 + 3.581P]$ where $P = (F_0^2 + 2F_c^2)/3$
4280 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
358 parameters	$\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$

0 restraints

 $\Delta \rho_{\rm min} = -1.16 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Ni1	0.15302 (7)	0.21144 (7)	0.80787 (6)	0.0439 (3)	
N1	0.3486 (4)	0.2176 (4)	0.8285 (4)	0.0403 (10)	
N2	0.5487 (4)	0.2256 (4)	0.8689 (4)	0.0449 (11)	
H2	0.6187	0.2557	0.8847	0.054*	
N3	0.1723 (4)	0.2837 (4)	0.6268 (4)	0.0432 (11)	
N4	0.1924 (5)	0.3537 (5)	0.4338 (4)	0.0520 (13)	
H4	0.2055	0.3536	0.3573	0.062*	
01	0.2132 (4)	0.0190 (4)	0.7957 (4)	0.0502 (10)	
O2	0.3797 (4)	-0.1188 (4)	0.8133 (4)	0.0621 (12)	
O3	0.6045 (4)	-0.1139 (4)	0.8582 (4)	0.0596 (11)	
Н3	0.5301	-0.1123	0.8414	0.089*	
O4	0.7386 (4)	0.0255 (4)	0.8992 (4)	0.0598 (12)	
O5	0.1072 (4)	0.4049 (4)	0.8174 (3)	0.0493 (10)	
O6	0.0993 (5)	0.5962 (4)	0.7061 (4)	0.0590 (11)	
O7	0.1250 (5)	0.6826 (4)	0.4849 (4)	0.0625 (12)	
H7	0.1167	0.6548	0.5568	0.094*	
08	0.1656 (4)	0.6062 (5)	0.3144 (4)	0.0671 (13)	
09	-0.0354 (4)	0.1738 (5)	0.7901 (5)	0.0746 (15)	
H9C	-0.0961	0.1264	0.8235	0.090*	
H9D	-0.0686	0.2430	0.7563	0.090*	
O10	0.1162 (5)	0.1683 (5)	0.9898 (4)	0.0798 (17)	
H10C	0.1598	0.1079	1.0266	0.096*	
H10D	0.0495	0.1848	1.0361	0.096*	
011	0.9033 (5)	0.2266 (5)	0.1288 (5)	0.0849 (17)	
H11C	0.8673	0.1570	0.1577	0.102*	
H11D	0.8986	0.2744	0.1835	0.102*	
O12	0.2218 (7)	0.3264 (7)	0.1953 (5)	0.110 (2)	
H12C	0.1862	0.3693	0.1375	0.132*	
H12D	0.2694	0.2670	0.1686	0.132*	
O13	0.2630 (6)	0.6526 (7)	0.0459 (6)	0.112 (2)	
H13C	0.2576	0.7035	-0.0191	0.135*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H13D	0.1980	0.6641	0.0960	0.135*	
O14	0.1006 (8)	0.4916 (9)	0.0385 (7)	0.152 (3)	
H14G	0.1650	0.5203	-0.0085	0.182*	
H14F	0.0605	0.4436	0.0024	0.182*	0.50
H14H	0.0326	0.5153	0.0054	0.182*	0.50
C1	0.3287 (5)	-0.0078 (5)	0.8114 (5)	0.0436 (13)	
C2	0.4061 (5)	0.0981 (5)	0.8310 (5)	0.0394 (12)	
C3	0.5317 (5)	0.1013 (5)	0.8560 (5)	0.0417 (13)	
C4	0.6338 (6)	-0.0005 (6)	0.8721 (5)	0.0466 (14)	
C5	0.4375 (5)	0.2931 (5)	0.8528 (5)	0.0457 (14)	
C6	0.4222 (7)	0.4317 (7)	0.8555 (8)	0.072 (2)	
H6A	0.4286	0.4444	0.9379	0.086*	0.50(2)
H6B	0.3345	0.4560	0.8394	0.086*	0.50(2)
H6'A	0.4762	0.4594	0.9105	0.086*	0.50(2)
H6'B	0.3334	0.4576	0.8773	0.086*	0.50(2)
C7	0.5053 (15)	0.5269 (15)	0.7781 (18)	0.069 (6)	0.50(2)
H7A	0.5949	0.5062	0.7896	0.082*	0.50(2)
H7B	0.4838	0.6115	0.7996	0.082*	0.50(2)
C8	0.484 (2)	0.525 (3)	0.645 (2)	0.093 (8)	0.50 (2)
H8A	0.4726	0.4389	0.6324	0.139*	0.50 (2)
H8B	0.5580	0.5582	0.5940	0.139*	0.50(2)
H8C	0.4092	0.5771	0.6261	0.139*	0.50(2)
C7'	0.4676 (19)	0.4840 (19)	0.718 (2)	0.068 (6)	0.50 (2)
H7'1	0.5570	0.4575	0.6994	0.082*	0.50 (2)
H7'2	0.4170	0.4455	0.6665	0.082*	0.50 (2)
C8'	0.4540 (19)	0.627 (2)	0.689(2)	0.100 (8)	0.50 (2)
H8'1	0.3664	0.6540	0.7096	0.150*	0.50(2)
H8'2	0.4775	0.6522	0.6047	0.150*	0.50 (2)
H8'3	0.5094	0.6655	0.7345	0.150*	0.50 (2)
С9	0.1183 (5)	0.4772 (6)	0.7179 (5)	0.0443 (13)	
C10	0.1527 (5)	0.4136 (5)	0.6109 (5)	0.0380 (12)	
C11	0.1660 (5)	0.4595 (6)	0.4900 (5)	0.0431 (13)	
C12	0.1541 (5)	0.5891 (6)	0.4234 (5)	0.0470 (14)	
C13	0.1946 (6)	0.2498 (6)	0.5181 (6)	0.0553 (16)	
C14	0.2084 (10)	0.1182 (8)	0.4929 (7)	0.087 (3)	
H14A	0.1637	0.1128	0.4232	0.104*	0.762 (11)
H14B	0.1647	0.0643	0.5605	0.104*	0.762 (11)
H14C	0.2409	0.0704	0.5641	0.104*	0.238 (11)
H14D	0.2791	0.1187	0.4296	0.104*	0.238 (11)
C15	0.3406 (12)	0.0638 (11)	0.4702 (11)	0.088 (4)	0.762 (11)
H15A	0.3896	0.0756	0.5354	0.106*	0.762 (11)
H15B	0.3823	0.1091	0.3964	0.106*	0.762 (11)
C16	0.3405 (16)	-0.0808(12)	0.4595 (14)	0.128 (6)	0.762 (11)
H16A	0.2931	-0.1248	0.5296	0.192*	0.762 (11)
H16B	0.4275	-0.1150	0.4530	0.192*	0.762 (11)
H16C	0.3010	-0.0919	0.3892	0.192*	0.762 (11)
C15'	0.121 (4)	0.030 (4)	0.449 (3)	0.086 (11)	0.238 (11)
H15C	0.0543	0.0036	0.5125	0.103*	0.238 (11)
H15D	0.1707	-0.0455	0.4292	0.103*	0.238 (11)
			-		

C16'	0.058 (4)	0.093 (4)	0.338 (4)	0.110 (15)	0.238 (11)
H16D	0.0276	0.1778	0.3492	0.165*	0.238 (11)
H16E	-0.0124	0.0433	0.3268	0.165*	0.238 (11)
H16F	0.1205	0.0965	0.2684	0.165*	0.238 (11)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0360 (4)	0.0492 (5)	0.0421 (4)	0.0037 (3)	-0.0052 (3)	0.0065 (3)
N1	0.038 (2)	0.040 (2)	0.041 (2)	0.004 (2)	-0.0074 (19)	-0.0003 (19)
N2	0.036 (2)	0.047 (3)	0.050 (3)	-0.003 (2)	-0.011 (2)	0.004 (2)
N3	0.045 (3)	0.045 (3)	0.039 (3)	0.000 (2)	-0.007 (2)	0.000 (2)
N4	0.059 (3)	0.060 (3)	0.036 (3)	0.008 (3)	-0.008 (2)	-0.006 (2)
01	0.049 (2)	0.046 (2)	0.054 (2)	-0.0064 (19)	-0.0120 (19)	0.0011 (18)
02	0.061 (3)	0.042 (2)	0.084 (3)	0.004 (2)	-0.009 (2)	-0.012 (2)
03	0.050 (3)	0.055 (3)	0.072 (3)	0.016 (2)	-0.007 (2)	-0.009 (2)
O4	0.039 (2)	0.067 (3)	0.067 (3)	0.010 (2)	-0.007 (2)	0.011 (2)
05	0.052 (2)	0.058 (3)	0.035 (2)	0.0139 (19)	-0.0061 (17)	-0.0037 (18)
O6	0.078 (3)	0.050 (3)	0.049 (2)	0.011 (2)	-0.012 (2)	-0.0061 (19)
O7	0.075 (3)	0.050 (3)	0.059 (3)	0.003 (2)	-0.012 (2)	0.008 (2)
08	0.060 (3)	0.084 (3)	0.047 (3)	0.009 (2)	-0.003 (2)	0.016 (2)
09	0.041 (2)	0.081 (3)	0.089 (4)	-0.010 (2)	-0.015 (2)	0.039 (3)
O10	0.066 (3)	0.103 (4)	0.050 (3)	0.043 (3)	0.011 (2)	0.028 (3)
011	0.076 (4)	0.083 (4)	0.098 (4)	-0.030 (3)	0.025 (3)	-0.040 (3)
012	0.133 (6)	0.133 (6)	0.070 (4)	0.049 (4)	-0.022 (4)	-0.042 (4)
O13	0.094 (5)	0.138 (6)	0.122 (5)	0.009 (4)	-0.050 (4)	-0.049 (4)
O14	0.146 (7)	0.185 (9)	0.124 (7)	0.007 (6)	-0.015 (5)	-0.024 (6)
C1	0.040 (3)	0.046 (3)	0.043 (3)	0.000 (3)	-0.005 (2)	0.000 (2)
C2	0.038 (3)	0.040 (3)	0.037 (3)	0.004 (2)	-0.002 (2)	0.002 (2)
C3	0.039 (3)	0.042 (3)	0.040 (3)	0.003 (2)	-0.001 (2)	0.004 (2)
C4	0.041 (3)	0.053 (4)	0.039 (3)	0.008 (3)	0.002 (2)	0.004 (3)
C5	0.041 (3)	0.044 (3)	0.051 (3)	0.004 (3)	-0.012 (3)	0.000 (3)
C6	0.061 (4)	0.056 (4)	0.102 (6)	0.003 (3)	-0.032 (4)	-0.008 (4)
C7	0.054 (9)	0.052 (9)	0.103 (14)	-0.008 (7)	-0.022 (9)	-0.008 (8)
C8	0.067 (12)	0.12 (2)	0.096 (17)	-0.009 (12)	-0.022 (12)	-0.009 (14)
C7'	0.052 (10)	0.059 (11)	0.094 (15)	-0.008 (8)	-0.010 (11)	-0.008 (11)
C8'	0.091 (14)	0.084 (15)	0.119 (17)	0.010 (11)	-0.010 (12)	0.000 (12)
C9	0.041 (3)	0.048 (3)	0.043 (3)	0.006 (3)	-0.008 (2)	-0.001 (3)
C10	0.033 (3)	0.043 (3)	0.037 (3)	0.002 (2)	-0.007 (2)	0.000 (2)
C11	0.033 (3)	0.052 (3)	0.043 (3)	-0.001 (2)	-0.005 (2)	-0.001 (3)
C12	0.036 (3)	0.057 (4)	0.044 (3)	0.000 (3)	-0.007 (2)	0.007 (3)
C13	0.065 (4)	0.056 (4)	0.045 (3)	0.006 (3)	-0.010 (3)	-0.010 (3)
C14	0.123 (8)	0.074 (5)	0.061 (5)	0.017 (5)	-0.014 (5)	-0.007 (4)
C15	0.101 (9)	0.081 (8)	0.079 (7)	0.003 (7)	-0.002 (6)	-0.009 (6)
C16	0.162 (15)	0.080 (9)	0.133 (13)	0.006 (9)	0.028 (11)	-0.024 (8)
C15'	0.10 (3)	0.08 (2)	0.07 (2)	0.00 (2)	0.004 (19)	-0.006 (18)
C16'	0.12 (4)	0.10 (3)	0.10(3)	0.01 (3)	0.02 (3)	0.00(2)

Geometric parameters (Å, °)

Ni1—O10	2.038 (4)	C5—C6	1.472 (9)
Ni1—N3	2.069 (4)	C6—C7	1.485 (17)
Ni1—O9	2.071 (4)	C6—C7'	1.60 (2)
Ni1—N1	2.092 (4)	С6—Н6А	0.9700
Ni1—O5	2.092 (4)	С6—Н6В	0.9700
Nil—O1	2.118 (4)	С6—Н6'А	0.9700
N1—C5	1.334 (7)	С6—Н6'В	0.9700
N1—C2	1.368 (7)	С7—С8	1.55 (3)
N2—C5	1.348 (7)	С7—Н7А	0.9700
N2—C3	1.368 (7)	С7—Н7В	0.9700
N2—H2	0.8600	C8—H8A	0.9600
N3—C13	1.322 (8)	C8—H8B	0.9600
N3—C10	1.366 (7)	C8—H8C	0.9600
N4—C13	1.347 (8)	C7'—C8'	1.50(3)
N4—C11	1.367 (8)	С7'—Н7'1	0.9700
N4—H4	0.8600	C7'—H7'2	0.9700
O1—C1	1.253 (7)	C8'—H8'1	0.9600
O2—C1	1.262 (7)	C8'—H8'2	0.9600
O3—C4	1.290 (7)	C8'—H8'3	0.9600
О3—Н3	0.8200	C9—C10	1.469 (8)
O4—C4	1.227 (7)	C10—C11	1.376 (7)
О5—С9	1.262 (7)	C11—C12	1.471 (8)
O6—C9	1.255 (7)	C13—C14	1.459 (10)
O7—C12	1.294 (8)	C14—C15	1.479 (14)
O7—H7	0.8200	C14—C15'	1.51 (4)
O8—C12	1.212 (7)	C14—H14A	0.9700
О9—Н9С	0.8500	C14—H14B	0.9700
O9—H9D	0.8501	C14—H14C	0.9700
O10—H10C	0.8500	C14—H14D	0.9700
O10—H10D	0.8500	C15—C16	1.552 (16)
O11—H11C	0.8500	C15—H15A	0.9700
O11—H11D	0.8500	C15—H15B	0.9700
O12—H12C	0.8500	C16—H16A	0.9600
O12—H12D	0.8500	C16—H16B	0.9600
O13—H13C	0.8500	C16—H16C	0.9600
O13—H13D	0.8500	C15'—C16'	1.52 (5)
O14—H14G	0.8500	C15'—H15C	0.9700
O14—H14F	0.8500	C15'—H15D	0.9700
O14—H14H	0.8500	C16'—H16D	0.9600
C1—C2	1.474 (8)	С16'—Н16Е	0.9600
C2—C3	1.378 (8)	C16'—H16F	0.9600
C3—C4	1.482 (8)		
O10—Ni1—N3	170.23 (19)	С7—С6—Н6'В	117.7
O10—Ni1—O9	89.5 (2)	С7'—С6—Н6'В	111.2
N3—Ni1—O9	87.80 (18)	H6'A—C6—H6'B	109.4
O10—Ni1—N1	89.03 (19)	C6—C7—C8	109.0 (17)

N3—Ni1—N1	95.10 (18)	С6—С7—Н7А	109.9
O9—Ni1—N1	170.79 (18)	C8—C7—H7A	109.9
O10—Ni1—O5	90.89 (18)	С6—С7—Н7В	109.9
N3—Ni1—O5	79.85 (16)	С8—С7—Н7В	109.9
O9—Ni1—O5	92.39 (19)	Н7А—С7—Н7В	108.3
N1—Ni1—O5	96.72 (17)	C8'—C7'—C6	113.1 (18)
O10-Ni1-O1	90.27 (18)	C8'—C7'—H7'1	109.0
N3—Ni1—O1	99.18 (17)	С6—С7'—Н7'1	109.0
O9—Ni1—O1	91.48 (18)	C8'—C7'—H7'2	109.0
N1—Ni1—O1	79.43 (16)	С6—С7'—Н7'2	109.0
O5—Ni1—O1	175.97 (16)	H7'1—C7'—H7'2	107.8
C5—N1—C2	106.1 (4)	С7'—С8'—Н8'1	109.5
C5—N1—Ni1	143.1 (4)	C7'—C8'—H8'2	109.5
C2—N1—Ni1	110.3 (3)	H8'1—C8'—H8'2	109.5
C5—N2—C3	108.5 (5)	С7'—С8'—Н8'3	109.5
C5—N2—H2	125.7	H8'1—C8'—H8'3	109.5
C3—N2—H2	125.7	H8'2—C8'—H8'3	109.5
C13—N3—C10	106.5 (5)	O6—C9—O5	124.3 (5)
C13—N3—Ni1	142.9 (4)	O6—C9—C10	119.7 (5)
C10—N3—Ni1	110.6 (3)	O5—C9—C10	116.0 (5)
C13—N4—C11	108.6 (5)	N3—C10—C11	109.6 (5)
C13—N4—H4	125.7	N3—C10—C9	118.3 (5)
C11—N4—H4	125.7	C11—C10—C9	132.1 (5)
C1—O1—Ni1	114.9 (4)	N4—C11—C10	105.0 (5)
С4—О3—Н3	109.5	N4—C11—C12	122.5 (5)
C9—O5—Ni1	115.1 (4)	C10—C11—C12	132.4 (6)
С12—О7—Н7	109.5	O8—C12—O7	121.5 (6)
Ni1—O9—H9C	141.0	O8—C12—C11	120.6 (6)
Ni1—O9—H9D	106.2	O7—C12—C11	117.8 (5)
H9C—O9—H9D	108.2	N3—C13—N4	110.2 (5)
Ni1—O10—H10C	118.9	N3—C13—C14	124.8 (6)
Ni1-010-H10D	130.0	N4—C13—C14	124.8 (6)
H10C—O10—H10D	108.5	C13—C14—C15	117.4 (9)
H11C—O11—H11D	108.6	C13—C14—C15'	133.9 (16)
H12C—O12—H12D	108.7	C15—C14—C15'	106.0 (16)
H13C—O13—H13D	110.1	C13—C14—H14A	107.9
H14G—O14—H14F	108.6	C15—C14—H14A	107.9
H14G—O14—H14H	108.5	C13—C14—H14B	107.9
O1—C1—O2	123.8 (5)	C15—C14—H14B	107.9
O1—C1—C2	116.6 (5)	H14A—C14—H14B	107.2
O2—C1—C2	119.6 (5)	C13—C14—H14C	104.5
N1—C2—C3	109.8 (5)	C15'—C14—H14C	106.3
N1—C2—C1	118.5 (5)	C13—C14—H14D	104.7
C3—C2—C1	131.7 (5)	H14C—C14—H14D	105.7
N2—C3—C2	105.3 (5)	C14—C15—C16	111.6 (11)
N2—C3—C4	122.9 (5)	C14—C15—H15A	109.3
C2—C3—C4	131.8 (5)	C16—C15—H15A	109.3
04	123.8 (5)	C14—C15—H15B	109.3
O4—C4—C3	119.7 (6)	C16—C15—H15B	109.3

O3—C4—C3	116.5 (5)	H15A—C15—H15B	108.0
N1—C5—N2	110.3 (5)	C14—C15'—C16'	113 (3)
N1—C5—C6	126.2 (5)	C14—C15'—H15C	109.0
N2—C5—C6	123.4 (5)	C16'—C15'—H15C	109.0
C5—C6—C7	123.6 (9)	C14—C15'—H15D	109.0
С5—С6—Н6А	106.4	C16'—C15'—H15D	109.0
С7—С6—Н6А	106.4	H15C—C15'—H15D	107.8
С5—С6—Н6В	106.4	C15'—C16'—H16D	109.5
С7—С6—Н6В	106.4	C15'—C16'—H16E	109.5
Н6А—С6—Н6В	106.5	H16D—C16'—H16E	109.5
С5—С6—Н6'А	111.6	C15'—C16'—H16F	109.5
С7'—С6—Н6'А	112.5	H16D—C16'—H16F	109.5
H6B—C6—H6'A	131.5	H16E—C16'—H16F	109.5
С5—С6—Н6'В	111.7		
010 Ni1 N1 C5	$-83 \Lambda (6)$	C2 N1 C5 C6	177 5 (6)
N3 Ni1 N1 C5	85.4 (0)	Ni1 N1 C5 C6	-122(11)
N_{3} N_{1} N_{1} C_{5}	7.1(0)	NII - NI - C5 - C0	-0.6(6)
03 Ni1 N1 C5	-172.0(7)	$C_3 = N_2 = C_5 = C_6$	-0.0(0)
01 - N1 - C3	-1/3.9(7)	$C_{3} = N_{2} = C_{3} = C_{0}$	-177.3(0) -121.2(12)
$N_1 = N_1 = N_1 = C_2$	102.2(4)	N1 - C5 - C6 - C7	-121.2(12)
$N_{3} = N_{1} = N_{1} = C_{2}$	-102.3(4)	$N_2 = C_3 = C_0 = C_7$	55.2 (15) 80.1 (10)
03 Nii Ni $C2$	1/7.4(3)	N1 - C5 - C6 - C7	-89.1(10)
$O_1 = N_1 = N_2 = C_1^2$	-3.8(3)	$N_2 - C_3 - C_0 - C_7$	87.3 (10) 64.8 (16)
09—NII—N5—C13	-62.1(7)	$C_{3} = C_{0} = C_{1} = C_{8}$	04.0(10)
NI = NII = NS = C13	89.1 (7) 174.0 (7)	$C_{1} = C_{0} = C_{1} = C_{8}$	3.8(18)
05-N11-N3-C13	-1/4.9(7)	$C_{3} = C_{6} = C_{7} = C_{8}^{2}$	1/6.0 (15)
OI = NII = N3 = C13	9.1 (/)	$C/-C_{0}-C_{0}-C_{0}$	-50.6 (17)
09—N11—N3—C10	95.9 (4)	NII-05-09-06	-1/7.5(5)
NI—NII—N3—C10	-92.8 (4)	NII = 05 = 05 = 010	4.1 (6)
05-N11-N3-C10	3.1 (3)	C13 - N3 - C10 - C11	-1.3(6)
OI = NII = N3 = CI0	-1/2.9(3)	N1 - N3 - C10 - C11	180.0 (3)
010-NII-OI-CI	-85.5 (4)	C13 - N3 - C10 - C9	1/6.6 (5)
$N_3 = N_1 = 0_1 = 0_1$	97.0 (4)	$N_1 = N_3 = C_1 = C_9$	-2.1 (6)
09—Nil—01—C1	-1/5.0(4)	06	-1/9.8 (5)
	3.5 (4)	05—C9—C10—N3	-1.3 (7)
010—N11—O5—C9	1/9.0 (4)	06-09-010-011	-2.5 (9)
N3—N11—O5—C9	-4.1 (4)	05-09-010-011	176.0 (5)
09—Ni1—05—C9	-91.4 (4)	C13—N4—C11—C10	0.0 (7)
NI—NII—O5—C9	89.9 (4)	C13—N4—C11—C12	-178.7 (5)
Ni1—O1—C1—O2	176.4 (4)	N3—C10—C11—N4	0.8 (6)
Ni1—O1—C1—C2	-2.3 (6)	C9—C10—C11—N4	-176.7 (6)
C5—N1—C2—C3	-0.6 (6)	N3-C10-C11-C12	179.3 (6)
N11—N1—C2—C3	-174.4 (4)	C9—C10—C11—C12	1.8 (10)
C5—N1—C2—C1	177.9 (5)	N4—C11—C12—O8	1.2 (9)
Ni1—N1—C2—C1	4.1 (6)	C10-C11-C12-O8	-177.1 (6)
01—C1—C2—N1	-1.3 (7)	N4—C11—C12—O7	178.0 (5)
02—C1—C2—N1	179.9 (5)	C10—C11—C12—O7	-0.4 (9)
O1—C1—C2—C3	176.7 (5)	C10—N3—C13—N4	1.3 (7)
O2—C1—C2—C3	-2.1 (9)	Ni1—N3—C13—N4	179.3 (5)
C5—N2—C3—C2	0.2 (6)	C10—N3—C13—C14	-173.9 (7)

C5—N2—C3—C4	-177.9 (5)	Ni1—N3—C13—C14	4.2 (12)
N1—C2—C3—N2	0.2 (6)	C11—N4—C13—N3	-0.8 (7)
C1—C2—C3—N2	-177.9 (5)	C11—N4—C13—C14	174.3 (7)
N1—C2—C3—C4	178.1 (5)	N3-C13-C14-C15	-98.7 (10)
C1—C2—C3—C4	0.0 (10)	N4-C13-C14-C15	86.8 (10)
N2-C3-C4-O4	0.7 (8)	N3—C13—C14—C15'	103 (2)
C2—C3—C4—O4	-177.0 (6)	N4—C13—C14—C15'	-72 (2)
N2—C3—C4—O3	179.5 (5)	C13-C14-C15-C16	173.4 (9)
C2—C3—C4—O3	1.8 (9)	C15'-C14-C15-C16	-22.4 (18)
C2—N1—C5—N2	0.7 (6)	C13-C14-C15'-C16'	48 (4)
Ni1—N1—C5—N2	171.0 (4)	C15-C14-C15'-C16'	-112 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2···O13 ⁱ	0.86	1.91	2.745 (7)	162
N4—H4…O12	0.86	1.88	2.734 (7)	171
O3—H3···O2	0.82	1.65	2.466 (6)	176
O7—H7…O6	0.82	1.70	2.523 (6)	180
O9—H9C···O4 ⁱⁱ	0.85	2.11	2.960 (6)	174
O9—H9D···O8 ⁱⁱⁱ	0.85	1.96	2.807 (6)	173
O10—H10C···O4 ^{iv}	0.85	1.87	2.724 (6)	177
O10—H10D…O11 ^v	0.85	1.83	2.675 (7)	177
O11—H11C···O1 ^{vi}	0.85	2.06	2.904 (6)	172
O11—H11C···O2 ^{vi}	0.85	2.62	3.197 (7)	127
O11—H11D···O6 ⁱ	0.85	1.99	2.830 (6)	172
O12—H12C…O14	0.85	1.84	2.676 (10)	166
O12—H12D···O3 ^{vi}	0.85	2.07	2.904 (7)	167
O13—H13C···O11 ^{vii}	0.85	2.23	2.889 (9)	134
O13—H13D…O8	0.85	2.44	3.068 (9)	131
O14—H14G…O13	0.85	1.99	2.488 (11)	117
O14—H14H…O14 ^{viii}	0.85	1.54	2.355 (17)	160
O14—H14F···O5 ^{ix}	0.85	2.19	2.778 (9)	127

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y, -z+2; (v) x-1, y, z+1; (vi) -x+1, -y, -z+1; (vii) -x+1, -y, -z+1; (vii) -x+1, -y, -z+1; (vii) -x+1, -z; (viii) -x, -y+1, -z; (ix) x, y, z-1.

